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1 Theorem A, Artin-Tate Lemma, and Integral Extensions

Recall that last time we stated Theorem A concerning characterization of affine do-
mains.

Theorem 1.1 (Main Theorem A). An affine algebra R = F [a1, . . . , an] is a field if and
only if R is algebraic over F .

To this end, we stated, and proved, two main lemmas to help with the proof of
Theorem (1.1);

Lemma 1. Suppose R is an F -algebra and a ∈ R. If the field of fractions K of F [a] is
affine over F , then a is algebraic over F , and thus K = F [a].

Lemma 2. Suppose R is an algebra over a commutative ring K, which as a K-module
is free with base B = {bj : j ∈ J} for some index set J . If H is a subring of K over
which B spans R, then H = K.

In order to prove theorem (1.1), we need one last lemma.

Lemma 3 (Artin-Tate). Suppose R = F [a1, . . . , an] is an affine F -algebra, and K a
subfield of R, with R a finite dimensional vector space over K. Then K is affine over
F .

Note: Before we prove the Artin-Tate lemma, recall that we have already established
that if R = F [a1, . . . , an] is algebraic over F , then R is a field. So Artin-Tate lemma
will facilitate the proof of the forward direction. We proceed by induction on n. When
n = 1, we know from field theory that F [a1] is a field if and only if a1 is a algebraic over
F (see Remark 4.7 in [1] for more details). Now suppose that the result is valid for all
positive integers up to and including n− 1. Suppose R = F [a1, . . . , an] is a field. Let K
denote the field of fractions of F [a1] (inside R). Then we may write R = K[a2, . . . , an],
which by our induction hypothesis is algebraic over K, and thus finite dimensional as a
K-vector space. Hence, it is sufficient to show that K is algebraic over F . By Lemma
(1), this boils down to showing that K is affine over F . This is precisely what the
Artin-Tate lemma allows us to conclude.

1



Proof. Since R is finite dimensional as a K-vector space, there exists b1, . . . , bm ∈ R
such that {b1, . . . , bm} forms a basis for R over K. By definition of a basis, we may find
αijk, βuk ∈ K such that

bibj =
m∑
k=1

αijkbk, au =
m∑
k=1

βukbk, (1)

for each 1 ≤ i, j ≤ m and 1 ≤ u ≤ n. Now consider

H = F [αijk, βuk : 1 ≤ i, j ≤ m, 1 ≤ u ≤ n] ⊆ K.

Set R0 := Hb1 + · · ·+Hbm, and observe that (1) implies that R0 is indeed closed under
multiplication, and therefore is a subalgebra of R containing a1, . . . , an. As R0 ⊆ R
and contains the generators of R we must have R0 = R. Applying Lemma (2) finishes
the proof.

Remark: Note that the assumption that R = F [a1, . . . , an] is a domain is crucial in
Theorem A. For instance, let F be a field and consider F × F = F [(0, 1), (1, 0)]. Then
this is an affine algebra generated by algebraic elements (1, 0), (0, 1), but is not a field,
since (1, 0) · (1, 0) = (0, 0).

We now introduce the notion of integrality, and then use it to give an alternate proof
of Theorem A. Before we do, recall that an element x of an arbitrary C-algebra R is
called algebraic over C if x is a root of a polynomial f(λ) ∈ C[λ].

Definition 1.2 (Integral Extension). Suppose R is a C-algebra. We say that r ∈ R is
integral over C if f(r) = 0 for some monic f(λ) ∈ C[λ]. We also say that R is an
integral extension of C if every element in R is integral over C. If this is the case,
then R is said to be integral over C.

Remark: Observe that begin integral implies algebraic and these notions coincide when
C is a field. The converse, however, is not true. For instance,

√
2/2 is algebraic over

Z but is not integral. Indeed, let f(λ) = 2λ2 − 1 ∈ Z[λ], and note f(
√

2/2) = 0 so that
the minimal polynomial, m(λ) ∈ Z[λ], for

√
2/2 must have degree at most 2. But m(λ)

is clearly not of degree one, and thus must equal f(λ). As f(λ) is not monic,
√

2/2 is
not integral over Z.

It is important to note that integrality is, in fact, the right notion which generalizes
the notion of algebraicity to extensions of arbitrary commutative rings.

Lemma 4. Suppose R is a C-algebra and r ∈ R is algebraic over C; i.e.,
∑n

j=0 cjr
j = 0

for some c0, . . . , cn ∈ C, and n ≥ 1. Then cnr is integral over C.

Proof. Consider the monic polynomial λn +
∑n−1

j=0 c
n−1−j
n cjλ

n ∈ C[λ]. Evaluating at cnr
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gives

(cnr)
n +

n−1∑
j=0

cn−1−jn cj(cnr)
j = (cnr)

n + cn−1n c0 + cn−1n c1r + · · ·+ cn−1(cnr)
n−1

= cnnr
n + cn−1n (c0 + c1r + · · ·+ cn−1r

n−1)

= cn−1n (cnr
n + c0 + c1r + · · ·+ cn−1r

n−1)

= 0,

where the last equality follows from the assumption that r is algebraic.

Theorem 1.3. Suppose R is a C-algebra and r ∈ R is given. Then the following are
equivalent.

1. r is integral over C.

2. C[r] is finitely generated as a C-module.

3. There is a faithful C[r]-module M which is finitely generated as a C-module.

Proof. To begin, observe that (2) immediately implies (3). To show that (1) implies
(2), note that if r is integral over C, then there exists n ≥ 1, and suitable elements
c0, . . . , cn−1 ∈ C such that rn = −(c0 + c1r+ · · ·+ cn−1r

n−1). But then it’s evident that
C[r] = C + Cr + · · ·+ Crn−1. Lastly, it remains to show that (3) implies (1). To ease
the notation, let M = Cr1 + Cr2 + · · ·+ Crk, for some r1, . . . , rk ∈ R. Fix r ∈ M and
note xrj ∈M for all 1 ≤ j ≤ k. Hence, there exists elements cij ∈ C such that

rri =
k∑

j=0

cijrj, (2)

holds for each 1 ≤ i ≤ k. Let A be the k× k matrix whose (i, j)th entry is given by cij,
and let v = [r1, . . . , rk]T , where T denotes the transpose operator. By (2), we obtain

(xIk − A)v


r − c11 −c12 · · · −c1k
−c21 r − c22 · · · −c2k

...
...

. . .
...

−crk1 −ck2 · · · r − ckk

 ·

r1
r2
...
rr

 = 0,

where Ik denotes the k × k identity matrix. This means

(detA)v = (adj A)(Av) = 0. (3)

In particular, the left hand side of (3) immediately gives (detA)rj = 0 for each j =
1, . . . , k. But then

(detA)M = (detA)
k∑

j=1

Crj = 0. (4)

Since M is faithful, its annihilator is trivial and so (4) implies detA = 0. Noting that
detA is a monic polynomial in r, we obtain the desired result.
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Theorem (1.3) has many striking implications.

Corollary. If R is C-algebra which is finitely generated as a C-module, then R is an
integral extension of C.

Proof. Given r ∈ R, note C[r] ⊆ R and one may view R (naturally) as a C[r]-module.
Now apply Theorem (1.3).

Lemma 5. Suppose C ⊆ L ⊆ R are rings with C and L commutative. Then

1. If L is finitely generated as a C-module and R is finitely generated as an L-module,
then R is finitely generated as a C-module.

2. If r ∈ R, and if L and C[r] are both finitely generated as a C-module, then L[r]
is also finitely generated as a C-module.

Proof. For (1), note we may pick `1, . . . , `n ∈ L and r1, . . . , rm ∈ R such that L =
C`1 + · · · + C`n and R = Lr1 + · · · + Lrm. We claim that R = C`1r1 + · · · + C`nrm.
Indeed, note x ∈ R if and only if there exist β1 . . . , βm ∈ L such that x =

∑m
i=1 βiri.

Similarly βi ∈ L (1 ≤ i ≤ m) if and only if there are α1, . . . , αn ∈ C such that
βi =

∑n
k=1 αik`k. Hence, we may write

x =
m∑
i=1

(
n∑

k=1

αik`k

)
ri =

m∑
i=1

(
n∑

j=1

αik`kri

)
,

as desired. For part (2), note

C[r] :=

{
n∑

j=0

cjr
j : cj ∈ C, n ≥ 0

}
, L[r] :=

{
n∑

j=0

αjr
j : αj ∈ L, n ≥ 0

}
.

Now we know we can write L = C`1 + · · · + C`k and C[r] = Cd1, . . . , Cdm for some
`1, . . . , `k ∈ L and d1, . . . , dm ∈ C[r]. This means that every power of r is spanned by
some subset of {d1, . . . , dm}. Consequently, one may write L[r] = Ld1 + · · ·+Ldm; i.e.,
L[r] is finitely generated as an L-module and L is finitely generated as a C-module.
Applying part (1) gives the desired result.

Corollary. If r1, . . . , rn ∈ R are integral over C, then C[r1, . . . , rn] is finitely generated
as a C-module, and thus is an integral extension of C.

Proof. This follows trivially by induction on n in view of Lemma (5) and the corollary
preceding it.

Recall from field theory that if F ⊇ M ⊇ L is a tower of filed extensions such that
F is algebraic over L, then F is algebraic over M and M is algebraic over L. Similarly,
an analogous result holds for integral extensions.
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Proposition (Transitivity of Integral Extensions). If R is integral over W and W is
integral over C, then R is integral over C.

Proof. Fix r ∈ R and note there exists monic f(λ) = λn +
∑n−1

j=0 wjr
j ∈ W [λ] with

f(r) = 0. Consider W0 = [w0, . . . , wn−1] and note the generators of W0 are integral over
C by our original assumption, and thus the W0 is finitely generated as a C-module, by
our second corollary. Hence, r is integral over W0 from which it follows, by part (1)
of (5), that C[w0, . . . , wn−1, r] is finitely generated as a C-module. The result is now
trivial.

In order to give an alternate proof of Theorem A, we require three last results. We
shall present the first one here and leave the other two for next class.

Theorem 1.4 (Special Case of Noether Normalization). Suppose an affine algebra
R = F [a1, . . . , an] is algebraic over F [a1]. Then there exists a suitable choice of b ∈ R
such that R = F [b, a2, . . . , an] and R is integral over F [b].

Proof. We proceed by induction on n. When n = 1, the result is trivial since we may
take b = a1. Now suppose n = 2. We must show that if R = F [a1, a2] is affine and
algebraic over F [a1], then there exists a d ∈ R for which R = F [d, a2] and R is integral
over F [d]. Equivalently, we wish to show that there exists d ∈ R with a2 is integral
over F [d]. To begin, note that since R is algebraic over F [a1], there exists polynomials
gj(λ1) =

∑mj

k=0 αkjλ
k
1 ∈ F [λ1], for each 0 ≤ j ≤ n and with αmjj 6= 0, such that

n∑
j=0

gj(a1)a
j
2 = 0. (5)

Setting

f(λ1, λ2) =
n∑

j=0

gj(λ1)λ
j
2 =

n∑
j=0

(
mj∑
i=0

αijλ
i
1

)
λj2 ∈ F [λ1, λ2],

we see that (5) is equivalent to f(a1, a2) = 0. In order to ensure that a2 is also integral
over F [a1], we must have that f(λ1, λ2) is monic in λ2. Define

h(λ1, λ2) := f(λ1 + λn+1
2 , λ2), and d = a1 − an+1

2 .

Note h(d, a2) = f(a1, a2) = 0. Now consider the expression for h = f(λ1 + λn+1
2 , λ2);

namely
n∑

j=0

(
mj∑
i=0

αij(λ1 + λn+1
2 )i

)
λj2. (6)

It is evident that the highest order term of h in λ2 is obtained by choosing the largest j
for which mj is greatest; i.e., if we let j′ denote the the largest j with respect to having
the largest value mj, then the leading coefficient of h in λ2 is given by

αmj′j
′λ

(n+1)mj′+j′

2 .
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By construction, the value (n+1)mj′ +j
′ is unique so that the leading term in λ2 cannot

vanish by cancellation through another term. Lastly, since we are working over a field
F , all coefficients are invertible; it is no loss generality to assume h is monic. Since
h(d, a2) = 0, this shows that a2 is integral over F [d]. But note this forces a1 = d+ an+1

2

to be integral over F [d]. Combining these observations, we conclude that R is integral
over F [d]. This verifies the case for n = 2. WE WILL FINISH OFF THE INDUCTION
NEXT TIME!
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